Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Buried-Pt gate InP/In0.52Al0.48As/In0.7Ga0.3As pseudomorphic HEMTs

Identifieur interne : 003372 ( Main/Repository ); précédent : 003371; suivant : 003373

Buried-Pt gate InP/In0.52Al0.48As/In0.7Ga0.3As pseudomorphic HEMTs

Auteurs : RBID : Pascal:11-0297604

Descripteurs français

English descriptors

Abstract

InP-based high electron mobility transistors (HEMTs) were fabricated by depositing Pt-based multilayer metallization on top of a 6-nm-thick InP etch stop layer and then applying a post-annealing process. The performances of the fabricated 55-nm-gate HEMTs before and after the post-annealing were characterized and were compared to investigate the effect of the penetration of Pt through the very thin InP etch stop layer. After annealing at 250 °C for 5 min, the extrinsic transconductance (Gm) was increased from 1.05 to 1.17 S/mm and Schottky barrier height was increased from 0.63 to 0.66 eV. The unity current gain cutoff frequency (fT) was increased from 351 to 408 GHz, and the maximum oscillation frequency (fmax) was increased from 225 to 260 GHz. These performance improvements can be attributed to penetration of the Pt through the 6-nm thick InP layer, and making contact on the InAlAs layer. The STEM image of the annealed device clearly shows that the Pt atoms contacted the InAlAs layer after penetrating through the InP layer.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:11-0297604

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Buried-Pt gate InP/In
<sub>0.52</sub>
Al
<sub>0.48</sub>
As/In
<sub>0.7</sub>
Ga
<sub>0.3</sub>
As pseudomorphic HEMTs</title>
<author>
<name>SEUNG HEON SHIN</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of Information and Communications and The WCU Department of Nonobio Materials and Electronics, Gwangju Institute of Science and Technology (GIST), 1 Oryong-dong Buk-gu</s1>
<s2>Gwangju 500-712</s2>
<s3>KOR</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Corée du Sud</country>
<wicri:noRegion>Gwangju 500-712</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kim, Tae Woo" uniqKey="Kim T">Tae-Woo Kim</name>
<affiliation wicri:level="4">
<inist:fA14 i1="02">
<s1>Microsystems Technology Laboratory, Massachusetts Institute of Technology</s1>
<s2>Cambridge, MA 02139</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Cambridge (Massachusetts)</settlement>
<region type="state">Massachusetts</region>
</placeName>
<orgName type="university">Massachusetts Institute of Technology</orgName>
</affiliation>
</author>
<author>
<name sortKey="Song, Jong In" uniqKey="Song J">Jong-In Song</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of Information and Communications and The WCU Department of Nonobio Materials and Electronics, Gwangju Institute of Science and Technology (GIST), 1 Oryong-dong Buk-gu</s1>
<s2>Gwangju 500-712</s2>
<s3>KOR</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Corée du Sud</country>
<wicri:noRegion>Gwangju 500-712</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Jang, Jae Hyung" uniqKey="Jang J">Jae-Hyung Jang</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of Information and Communications and The WCU Department of Nonobio Materials and Electronics, Gwangju Institute of Science and Technology (GIST), 1 Oryong-dong Buk-gu</s1>
<s2>Gwangju 500-712</s2>
<s3>KOR</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Corée du Sud</country>
<wicri:noRegion>Gwangju 500-712</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">11-0297604</idno>
<date when="2011">2011</date>
<idno type="stanalyst">PASCAL 11-0297604 INIST</idno>
<idno type="RBID">Pascal:11-0297604</idno>
<idno type="wicri:Area/Main/Corpus">002F60</idno>
<idno type="wicri:Area/Main/Repository">003372</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0038-1101</idno>
<title level="j" type="abbreviated">Solid-state electron.</title>
<title level="j" type="main">Solid-state electronics</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Annealing</term>
<term>Barrier height</term>
<term>Binary compound</term>
<term>Current gain</term>
<term>Cut off frequency</term>
<term>Electric contact</term>
<term>Electron mobility</term>
<term>High electron mobility transistor</term>
<term>Indium phosphide</term>
<term>Metallizing</term>
<term>Microelectronic fabrication</term>
<term>Multiple layer</term>
<term>Oscillation frequency</term>
<term>Performance evaluation</term>
<term>Pseudomorphic transistor</term>
<term>Schottky barrier</term>
<term>Thick film</term>
<term>Transconductance</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Transistor pseudomorphique</term>
<term>Transistor mobilité électron élevée</term>
<term>Métallisation</term>
<term>Recuit</term>
<term>Evaluation performance</term>
<term>Transconductance</term>
<term>Barrière Schottky</term>
<term>Hauteur barrière</term>
<term>Gain courant</term>
<term>Fréquence coupure</term>
<term>Fréquence oscillation</term>
<term>Mobilité électron</term>
<term>Contact électrique</term>
<term>Phosphure d'indium</term>
<term>Composé binaire</term>
<term>Multicouche</term>
<term>Couche épaisse</term>
<term>Fabrication microélectronique</term>
<term>InP</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">InP-based high electron mobility transistors (HEMTs) were fabricated by depositing Pt-based multilayer metallization on top of a 6-nm-thick InP etch stop layer and then applying a post-annealing process. The performances of the fabricated 55-nm-gate HEMTs before and after the post-annealing were characterized and were compared to investigate the effect of the penetration of Pt through the very thin InP etch stop layer. After annealing at 250 °C for 5 min, the extrinsic transconductance (G
<sub>m</sub>
) was increased from 1.05 to 1.17 S/mm and Schottky barrier height was increased from 0.63 to 0.66 eV. The unity current gain cutoff frequency (f
<sub>T</sub>
) was increased from 351 to 408 GHz, and the maximum oscillation frequency (f
<sub>max</sub>
) was increased from 225 to 260 GHz. These performance improvements can be attributed to penetration of the Pt through the 6-nm thick InP layer, and making contact on the InAlAs layer. The STEM image of the annealed device clearly shows that the Pt atoms contacted the InAlAs layer after penetrating through the InP layer.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0038-1101</s0>
</fA01>
<fA03 i2="1">
<s0>Solid-state electron.</s0>
</fA03>
<fA05>
<s2>62</s2>
</fA05>
<fA06>
<s2>1</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Buried-Pt gate InP/In
<sub>0.52</sub>
Al
<sub>0.48</sub>
As/In
<sub>0.7</sub>
Ga
<sub>0.3</sub>
As pseudomorphic HEMTs</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>SEUNG HEON SHIN</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>KIM (Tae-Woo)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>SONG (Jong-In)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>JANG (Jae-Hyung)</s1>
</fA11>
<fA14 i1="01">
<s1>School of Information and Communications and The WCU Department of Nonobio Materials and Electronics, Gwangju Institute of Science and Technology (GIST), 1 Oryong-dong Buk-gu</s1>
<s2>Gwangju 500-712</s2>
<s3>KOR</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Microsystems Technology Laboratory, Massachusetts Institute of Technology</s1>
<s2>Cambridge, MA 02139</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s1>106-109</s1>
</fA20>
<fA21>
<s1>2011</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>2888</s2>
<s5>354000189906560180</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2011 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>25 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>11-0297604</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Solid-state electronics</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>InP-based high electron mobility transistors (HEMTs) were fabricated by depositing Pt-based multilayer metallization on top of a 6-nm-thick InP etch stop layer and then applying a post-annealing process. The performances of the fabricated 55-nm-gate HEMTs before and after the post-annealing were characterized and were compared to investigate the effect of the penetration of Pt through the very thin InP etch stop layer. After annealing at 250 °C for 5 min, the extrinsic transconductance (G
<sub>m</sub>
) was increased from 1.05 to 1.17 S/mm and Schottky barrier height was increased from 0.63 to 0.66 eV. The unity current gain cutoff frequency (f
<sub>T</sub>
) was increased from 351 to 408 GHz, and the maximum oscillation frequency (f
<sub>max</sub>
) was increased from 225 to 260 GHz. These performance improvements can be attributed to penetration of the Pt through the 6-nm thick InP layer, and making contact on the InAlAs layer. The STEM image of the annealed device clearly shows that the Pt atoms contacted the InAlAs layer after penetrating through the InP layer.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D03F04</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D03F01</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>001D03F17</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Transistor pseudomorphique</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Pseudomorphic transistor</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Transistor pseudomórfico</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Transistor mobilité électron élevée</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>High electron mobility transistor</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Transistor movibilidad elevada electrones</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Métallisation</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Metallizing</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Metalización</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Recuit</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Annealing</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Recocido</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Evaluation performance</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Performance evaluation</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Evaluación prestación</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Transconductance</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Transconductance</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Transconductancia</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Barrière Schottky</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Schottky barrier</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Barrera Schottky</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Hauteur barrière</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Barrier height</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Altura barrera</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Gain courant</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Current gain</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Ganancia corriente</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Fréquence coupure</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Cut off frequency</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Frecuencia corte</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Fréquence oscillation</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Oscillation frequency</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Frecuencia oscilación</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Mobilité électron</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Electron mobility</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Movilidad electrón</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Contact électrique</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Electric contact</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Contacto eléctrico</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Phosphure d'indium</s0>
<s5>22</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Indium phosphide</s0>
<s5>22</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Indio fosfuro</s0>
<s5>22</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Composé binaire</s0>
<s5>23</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Binary compound</s0>
<s5>23</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Compuesto binario</s0>
<s5>23</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Multicouche</s0>
<s5>24</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Multiple layer</s0>
<s5>24</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Capa múltiple</s0>
<s5>24</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Couche épaisse</s0>
<s5>25</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Thick film</s0>
<s5>25</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Capa espesa</s0>
<s5>25</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Fabrication microélectronique</s0>
<s5>46</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Microelectronic fabrication</s0>
<s5>46</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Fabricación microeléctrica</s0>
<s5>46</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>InP</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Composé III-V</s0>
<s5>14</s5>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>III-V compound</s0>
<s5>14</s5>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Compuesto III-V</s0>
<s5>14</s5>
</fC07>
<fN21>
<s1>206</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003372 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 003372 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:11-0297604
   |texte=   Buried-Pt gate InP/In0.52Al0.48As/In0.7Ga0.3As pseudomorphic HEMTs
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024